Extensions 1→N→G→Q→1 with N=C32 and Q=C9⋊S3

Direct product G=N×Q with N=C32 and Q=C9⋊S3
dρLabelID
C32×C9⋊S354C3^2xC9:S3486,227

Semidirect products G=N:Q with N=C32 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C321(C9⋊S3) = He33D9φ: C9⋊S3/C9S3 ⊆ Aut C3281C3^2:1(C9:S3)486,142
C322(C9⋊S3) = He34D9φ: C9⋊S3/C9S3 ⊆ Aut C32546C3^2:2(C9:S3)486,182
C323(C9⋊S3) = C33⋊D9φ: C9⋊S3/C32S3 ⊆ Aut C3281C3^2:3(C9:S3)486,137
C324(C9⋊S3) = C336D9φ: C9⋊S3/C32S3 ⊆ Aut C3254C3^2:4(C9:S3)486,181
C325(C9⋊S3) = C3×C324D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C32162C3^2:5(C9:S3)486,240
C326(C9⋊S3) = C339D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C32243C3^2:6(C9:S3)486,247

Non-split extensions G=N.Q with N=C32 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C32.1(C9⋊S3) = He32D9φ: C9⋊S3/C9S3 ⊆ Aut C3281C3^2.1(C9:S3)486,56
C32.2(C9⋊S3) = 3- 1+2⋊D9φ: C9⋊S3/C9S3 ⊆ Aut C3281C3^2.2(C9:S3)486,57
C32.3(C9⋊S3) = He3.3D9φ: C9⋊S3/C9S3 ⊆ Aut C32816+C3^2.3(C9:S3)486,58
C32.4(C9⋊S3) = He3.4D9φ: C9⋊S3/C9S3 ⊆ Aut C32816+C3^2.4(C9:S3)486,59
C32.5(C9⋊S3) = C929C6φ: C9⋊S3/C9S3 ⊆ Aut C3281C3^2.5(C9:S3)486,144
C32.6(C9⋊S3) = He3.5D9φ: C9⋊S3/C9S3 ⊆ Aut C32816+C3^2.6(C9:S3)486,163
C32.7(C9⋊S3) = C332D9φ: C9⋊S3/C32S3 ⊆ Aut C3227C3^2.7(C9:S3)486,52
C32.8(C9⋊S3) = (C3×C9)⋊5D9φ: C9⋊S3/C32S3 ⊆ Aut C3281C3^2.8(C9:S3)486,53
C32.9(C9⋊S3) = (C3×C9)⋊6D9φ: C9⋊S3/C32S3 ⊆ Aut C3281C3^2.9(C9:S3)486,54
C32.10(C9⋊S3) = C33.D9φ: C9⋊S3/C32S3 ⊆ Aut C32276+C3^2.10(C9:S3)486,55
C32.11(C9⋊S3) = C923C6φ: C9⋊S3/C32S3 ⊆ Aut C3281C3^2.11(C9:S3)486,141
C32.12(C9⋊S3) = C33.5D9φ: C9⋊S3/C32S3 ⊆ Aut C3281C3^2.12(C9:S3)486,162
C32.13(C9⋊S3) = C3.2(C9⋊D9)φ: C9⋊S3/C3×C9C2 ⊆ Aut C32162C3^2.13(C9:S3)486,42
C32.14(C9⋊S3) = C9⋊D27φ: C9⋊S3/C3×C9C2 ⊆ Aut C32243C3^2.14(C9:S3)486,50
C32.15(C9⋊S3) = C322D27φ: C9⋊S3/C3×C9C2 ⊆ Aut C32546C3^2.15(C9:S3)486,51
C32.16(C9⋊S3) = C3×C9⋊D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C32162C3^2.16(C9:S3)486,134
C32.17(C9⋊S3) = C3×C27⋊S3φ: C9⋊S3/C3×C9C2 ⊆ Aut C32162C3^2.17(C9:S3)486,160
C32.18(C9⋊S3) = C928S3φ: C9⋊S3/C3×C9C2 ⊆ Aut C32243C3^2.18(C9:S3)486,180
C32.19(C9⋊S3) = C324D27φ: C9⋊S3/C3×C9C2 ⊆ Aut C32243C3^2.19(C9:S3)486,184
C32.20(C9⋊S3) = C3×C322D9central extension (φ=1)54C3^2.20(C9:S3)486,135

׿
×
𝔽