extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C9⋊S3) = He3⋊2D9 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | | C3^2.1(C9:S3) | 486,56 |
C32.2(C9⋊S3) = 3- 1+2⋊D9 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | | C3^2.2(C9:S3) | 486,57 |
C32.3(C9⋊S3) = He3.3D9 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | 6+ | C3^2.3(C9:S3) | 486,58 |
C32.4(C9⋊S3) = He3.4D9 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | 6+ | C3^2.4(C9:S3) | 486,59 |
C32.5(C9⋊S3) = C92⋊9C6 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | | C3^2.5(C9:S3) | 486,144 |
C32.6(C9⋊S3) = He3.5D9 | φ: C9⋊S3/C9 → S3 ⊆ Aut C32 | 81 | 6+ | C3^2.6(C9:S3) | 486,163 |
C32.7(C9⋊S3) = C33⋊2D9 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 27 | | C3^2.7(C9:S3) | 486,52 |
C32.8(C9⋊S3) = (C3×C9)⋊5D9 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.8(C9:S3) | 486,53 |
C32.9(C9⋊S3) = (C3×C9)⋊6D9 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.9(C9:S3) | 486,54 |
C32.10(C9⋊S3) = C33.D9 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.10(C9:S3) | 486,55 |
C32.11(C9⋊S3) = C92⋊3C6 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.11(C9:S3) | 486,141 |
C32.12(C9⋊S3) = C33.5D9 | φ: C9⋊S3/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.12(C9:S3) | 486,162 |
C32.13(C9⋊S3) = C3.2(C9⋊D9) | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 162 | | C3^2.13(C9:S3) | 486,42 |
C32.14(C9⋊S3) = C9⋊D27 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 243 | | C3^2.14(C9:S3) | 486,50 |
C32.15(C9⋊S3) = C32⋊2D27 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.15(C9:S3) | 486,51 |
C32.16(C9⋊S3) = C3×C9⋊D9 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 162 | | C3^2.16(C9:S3) | 486,134 |
C32.17(C9⋊S3) = C3×C27⋊S3 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 162 | | C3^2.17(C9:S3) | 486,160 |
C32.18(C9⋊S3) = C92⋊8S3 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 243 | | C3^2.18(C9:S3) | 486,180 |
C32.19(C9⋊S3) = C32⋊4D27 | φ: C9⋊S3/C3×C9 → C2 ⊆ Aut C32 | 243 | | C3^2.19(C9:S3) | 486,184 |
C32.20(C9⋊S3) = C3×C32⋊2D9 | central extension (φ=1) | 54 | | C3^2.20(C9:S3) | 486,135 |